From Individual to Collective Behavior in Bacterial Chemotaxis

نویسندگان

  • Radek Erban
  • Hans G. Othmer
چکیده

Bacterial chemotaxis is widely studied from both the microscopic (cell) and macroscopic (population) points of view, and here we connect these very different levels of description by deriving the classical macroscopic description for chemotaxis from a microscopic model of the behavior of individual cells. The analysis is based on the velocity jump process for describing the motion of individuals such as bacteria, wherein each individual carries an internal state that evolves according to a system of ordinary differential equations forced by a timeand/or space-dependent external signal. In the problem treated here the turning rate of individuals is a functional of the internal state, which in turn depends on the external signal. Using moment closure techniques in one space dimension, we derive and analyze a macroscopic system of hyperbolic differential equations describing this velocity jump process. Using a hyperbolic scaling of space and time, we obtain a single second-order hyperbolic equation for the population density, and using a parabolic scaling, we obtain the classical chemotaxis equation, wherein the chemotactic sensitivity is now a known function of parameters of the internal dynamics. Numerical simulations show that the solutions of the macroscopic equations agree very well with the results of Monte Carlo simulations of individual movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations.

We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller-Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interac...

متن کامل

From Individual to Collective Behavior of Unicellular Organisms: Recent Results and Open Problems

The collective movements of unicellular organisms such as bacteria or amoeboid (crawling) cells are often modeled by partial differential equations (PDEs) that describe the time evolution of cell density. In particular, chemotaxis equations have been used to model the movement towards various kinds of extracellular cues. Well-developed analytical and numerical methods for analyzing the time-dep...

متن کامل

Collective guidance of collective cell migration.

Some cells migrate and find their way as solitary entities. However, during development of multicellular animals and possibly during tumor dissemination, cells often move as groups, associated tightly or loosely. Recent advances in live imaging have aided examination of such 'multicellular cell biology'. Here, I propose a model for how a group of cells can process and react to guidance informat...

متن کامل

Fast, high-throughput measurement of collective behaviour in a bacterial population.

Swimming bacteria explore their environment by performing a random walk, which is biased in response to, for example, chemical stimuli, resulting in a collective drift of bacterial populations towards 'a better life'. This phenomenon, called chemotaxis, is one of the best known forms of collective behaviour in bacteria, crucial for bacterial survival and virulence. Both single-cell and macrosco...

متن کامل

Emergent versus Individual-Based Multicellular Chemotaxis.

Multicellular chemotaxis can occur via individually chemotaxing cells that are mechanically coupled. Alternatively, it can emerge collectively, from cells chemotaxing differently in a group than they would individually. Here we consider collective movement that emerges from cells on the exterior of the collective responding to chemotactic signals, whereas bulk cells remain uninvolved in sensing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2004